目的 研究直升机滑动轴承磨损仿真及验证技术,开发直升机滑动轴承磨损仿真系统,通过试验验证其有效性。方法 针对滑动轴承磨损故障知识进行分析需求、细化分类关键要素、构建知识模型等故障知识建模技术研究,通过ABAQUS建立轴承接触力学仿真模型,分析仿真结果,基于滑动轴承材料样件磨损仿真的几何模型与试验样件,研究滑动轴承应力-磨损耦合仿真建模技术。通过磨损量测算、试验数据和外场数据等实测数据开展滑动轴承磨损仿真验证,研发滑动轴承磨损仿真系统,并以直升机某阻尼器带柄轴承为例,开展该轴承磨损仿真材料参数测定试验、摩擦磨损试验,构建该轴承磨损故障仿真模型。结果 基于应力-磨损耦合仿真模型及磨损量实测数据,开发直升机滑动轴承接触力学和磨损仿真模块,支持模型构建、多领域耦合仿真和仿真结果可视化。取试验工况为1 500、1 200、800、500、150 N的输入载荷得到的磨损深度数据,计算仿真数据与拟合曲线的最大误差不大于±6%。结论 该仿真技术路线可行。
Abstract
The work aims to conduct research on the simulation and verification technology of helicopter sliding bearing wear, develop a helicopter sliding bearing wear simulation system, and verify its validity through experiments. The fault knowledge modeling technology was studied through the knowledge demand analysis of sliding bearing wear faults, classification of key elements, knowledge models, etc. A bearing contact mechanics simulation model was established, and the contact mechanics simulation results were analyzed to study the contact mechanics simulation modeling technology of helicopter sliding bearings. The stress-wear coupling simulation modeling technology of sliding bearing material sample models was researched. Through research on the simulation verification technology of sliding bearing wear based on the measured wear data; developing a simulation system for sliding bearing wear, and taking the handle bearing of a certain damper of a helicopter as an example, the determination test of material parameters for the wear simulation of this bearing and the friction and wear test were carried out, and the wear fault simulation model of this bearing was constructed. Based on the stress-wear coupling simulation model of helicopter sliding bearings and the simulation verification technology of helicopter sliding bearing wear based on the measured data of wear amount, a contact mechanics and wear simulation module of helicopter sliding bearings was developed, supporting model construction, multi-domain coupling simulation and visualization of simulation results. Based on the wear depth data obtained from the friction and wear tests of sliding bearing materials, the experimental conditions of 1 500 N, 1 200 N, 800 N, 500 N, and 150 N were taken as the input loads of the sample model. The maximum error between the calculated simulation data and the fitting curve was no more than ±6%, which proved the feasibility of this simulation technical route.
关键词
直升机 /
滑动轴承 /
磨损仿真 /
应力-磨损耦合仿真模型 /
磨损性能
Key words
helicopter /
sliding bearing /
wear simulation /
stress-wear coupling simulation model /
wear performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 雷美娟, 田凌, 石金大, 等. 斜撑式超越离合器用Cr7C3涂层和GCr15基体的磨损行为研究[J]. 表面技术, 2018, 47(8): 90-97.
LEI M J, TIAN L, SHI J D, et al.Wear Behavior of Cr7C3 Coating and GCr15 Substrate for Sprag Overrunning Clutch[J]. Surface Technology, 2018, 47(8): 90-97.
[2] 朱楚. 高速斜撑超越离合器设计方法研究[D]. 南京: 南京航空航天大学, 2012.
ZHU C.Research on Design Method ofHigh Speed Sprag over Running Clutch[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[3] 沈智宪, 乔百杰, 罗巍, 等. 齿轮磨损故障动态响应特征与诊断指标研究[J]. 机械工程学报, 2021, 57(17): 120-131.
SHEN Z X, QIAO B J, LUO W, et al.Research on Dynamic Response Characteristics and Condition Indicators of Gear Wear Fault[J]. Journal of Mechanical Engineering, 2021, 57(17): 120-131.
[4] 余媛媛. 直升机尾传花键微动磨损仿真分析研究[D]. 重庆: 重庆大学, 2021.
YU Y Y.Simulation and Analysis of Spline Fretting Wear of He1icopter Tail Transmission[D]. Chongqing: Chongqing University, 2021.
[5] 李爱. 航空发动机磨损故障智能诊断若干关键技术研究[D]. 南京: 南京航空航天大学, 2013.
LI A.Research on Key Techniques of Aero-engine Wear Fault Intelligent Diagnosis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[6] 殷锐, 杨奉霖, 陈兴明, 等. 直升机传动系统离合器支承球轴承微动磨损分析[J]. 轴承, 2023(1): 23-27.
YIN R, YANG F L, CHEN X M, et al.Analysis on Fretting Wear of Ball Bearings Supporting Clutch in Helicopter Transmission System[J]. Bearing, 2023(1): 23-27.
[7] 高亚东, 张曾锠, 余建航. 旋翼变距拉杆关节轴承磨损故障特征及磨损程度识别[J]. 南京航空航天大学学报, 2006, 38(1): 6-10.
GAO Y D, ZHANG Z C, YU J H.Diagnosis of Worn Pitch-Change-Link Rod End in Helicopter Rotor System[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(1): 6-10.
[8] 陈海牛, 姜道有, 卓伟伟, 等. 某型直升机发动机轴承磨损失效故障分析[J]. 航空维修与工程, 2022(12): 57-59.
CHEN H N, JIANG D Y, ZHUO W W, et al.Fault Analysis on Engine Bearing Wear for a Certain Type of Helicopter[J]. Aviation Maintenance & Engineering, 2022(12): 57-59.
[9] 王艳丰, 郜伟强, 滕光蓉, 等. 基于降维双谱分析法的航空发动机轴承磨损故障分析[J]. 燃气涡轮试验与研究, 2021, 34(5): 39-43.
WANG Y F, GAO W Q, TENG G R, et al.Fault Analysis of Aero-Engine Bearing Wear Based on Bi-Spectrum’s Dimension Reduction[J]. Gas Turbine Experiment and Research, 2021, 34(5): 39-43.
[10] 吕延军, 赵晓伟, 陈锐搏, 等. 关节轴承摩擦学性能与剩余寿命预测综述[J]. 交通运输工程学报, 2025, 25(1): 29-47.
LYU Y J, ZHAO X W, CHEN R B, et al.Review on Frictional Properties and Residual Life Prediction of Spherical Plain Bearing[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 29-47.
[11] 魏澳博, 马国政, 李国禄, 等. 自润滑关节轴承磨损寿命研究方法现状与展望[J]. 表面技术, 2023, 52(4): 31-46.
WEI A B, MA G Z, LI G L, et al.Status and Prospect of Research Methods on Wear Life of Self-Lubricating Spherical Plain Bearing[J]. Surface Technology, 2023, 52(4): 31-46.
[12] 魏澳博, 马国政, 李国禄, 等. 空间环境因素对涂层型自润滑关节轴承磨损寿命影响规律及机理[J]. 表面技术, 2022, 51(11): 10-19.
WEI A B, MA G Z, LI G L, et al.Spatial Environmental Factors on the Wear Life of Coated Self-Lubricating Joint Bearings Influence Law and Mechanism[J]. Surface Technology, 2022, 51(11): 10-19.
[13] 邱明, 张亚涛, 卢团良, 等. 套圈材料对自润滑关节轴承热力学性能的影响[J]. 航空动力学报, 2020, 35(10): 2097-2103.
QIU M, ZHANG Y T, LU T L, et al.Influence of Ring Material on Thermodynamic Performance of Self-Lubricating Spherical Plain Bearing[J]. Journal of Aerospace Power, 2020, 35(10): 2097-2103.
[14] 杨育林, 房兴明, 吴峰. 自润滑关节轴承磨损性能研究[J]. 轴承, 2015(12): 38-41.
YANG Y L, FANG X M, WU F.Research on Wear Performance of Self-Lubricating Spherical Plain Bearings[J]. Bearing, 2015(12): 38-41.
[15] 黄雄荣. 自润滑关节轴承在不同应力下的摩擦磨损特性[J]. 航空材料学报, 2024, 44(3): 132-141.
HUANG X R.Friction and Wear Characteristics of Self-Lubricating Spherical Bearings under Different Stresses[J]. Journal of Aeronautical Materials, 2024, 44(3): 132-141.
[16] 邱明, 周大威, 周占生. 基于加速寿命试验的自润滑关节轴承可靠性分析[J]. 兵工学报, 2018, 39(7): 1429-1435.
QIU M, ZHOU D W, ZHOU Z S.Reliability Analysis of Self-Lubricating Spherical Plain Bearings Based on Accelerated Life Tests[J]. Acta Armamentarii, 2018, 39(7): 1429-1435.
[17] 李俊超, 朱丽娜, 马国政, 等. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报, 2018, 32(21): 3796-3804.
LI J C, ZHU L N, MA G Z, et al.Research Status on Quality Inspection and Life Evaluation of Self-Lubricating Spherical Plain Bearings[J]. Materials Review, 2018, 32(21): 3796-3804.
[18] 张详坡, 尚建忠, 陈循, 等. 自润滑关节轴承磨损寿命模型[J]. 国防科技大学学报, 2013, 35(6): 53-59.
ZHANG X P, SHANG J Z, CHEN X, et al.Wear-Life Models for Self-Lubricating Spherical Plain Bearing[J]. Journal of National University of Defense Technology, 2013, 35(6): 53-59.
[19] 韩翠红, 石佳东, 刘云帆, 等. 关节轴承自润滑材料摩擦学性能及轴承寿命预测研究现状[J]. 材料导报, 2021, 35(5): 5166-5173.
HAN C H, SHI J D, LIU Y F, et al.Research Progress of Tribological Properties and Life Estimation Methods of Self-Lubricating Spherical Plain Bearings[J]. Materials Reports, 2021, 35(5): 5166-5173.
[20] 刘云帆, 秦红玲, 韩翠红, 等. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 1036-1045.
LIU Y F, QIN H L, HAN C H, et al.Research Status of Life Test and Damage Failure Mechanism of Self-Lubricating Spherical Plain Bearings[J]. Materials Reports, 2021, 35(1): 1036-1045.
[21] 常凯. 基于ANSYS的O形密封圈磨损仿真方法研究[J]. 液压与气动, 2018, 42(2): 98-103.
CHANG K.Wear Simulation Method of O-Ring Based on ANSYS[J]. Chinese Hydraulics & Pneumatics, 2018, 42(2): 98-103.
[22] 陈腾飞. 一种有限元分析中的轴承简化方法[J]. 科学技术创新, 2020(15): 149-150.
CHEN T F.A Simplified Method of Bearing in Finite Element Analysis[J]. Scientific and Technological Innovation, 2020(15): 149-150.
[23] 张方宇. 制动器热-应力-磨损耦合行为研究[D]. 北京: 清华大学, 2014.
ZHANG F Y.Study on Coupled Heat Transfer,Stress and Wear Behavior in Brakes[D]. Beijing: Tsinghua University, 2014.
[24] DUDDU R, KOTA N, QIDWAI S M.An Extended Finite Element Method Based Approach for Modeling Crevice and Pitting Corrosion[J]. Journal of Applied Mechanics, 2016, 83(8): 081003.